The Gas Cycle in the 21st Century

Stephen A. Holditch
Schlumberger
Outline

• The Past
• The Golden Age of Oil
• The Golden Age of Gas - Now
• The Gas Cycle – What is it?
• LNG, GTL, Gas by Wire, UGS
• Conclusions
• The Past – Progression from
 - Wood to
 - Coal to
 - Oil
Decarbonization

Methane: H/C = 4
Oil: H/C = 2
Coal: H/C = 1
Wood H/C = 0.1

Source: Ausubel, American Scientist, March-April 1996
Decarbonization

- As we have progressed from wood to coal to oil, the carbon to hydrogen ratio of these fuels has decreased.
- However, more fuel is being consumed, so the amount of carbon released to the atmosphere has been increasing.
- In the future, the switch to natural gas and eventually, to hydrogen will be beneficial to the environment.
- But in the next 20 years, we will burn more oil, gas and coal than ever before.
The Golden Age of Oil
- Oil production becoming more important than exploration

![Graph showing oil discoveries and production with peak in 1962 and subsequent decline. Source: US DOE EIA - International Energy Outlook, 1999]
How Much Oil is Left in Conventional Reservoirs?
Worldwide Oil Production

- Current oil production rate:
 27 Billion STB/yr
- Cumulative production through 1996*:
 784 Billion STB
- Thus, through 2001, production is over
 900 Billion STB

* From Campbell
World Oil Reserves

- ME: 700 B BBLs
- NSA: 150 B BBLs
- AF: 100 B BBLs
- EE&FSU: 75 B BBLs
- AP: 50 B BBLs
- WE: 25 B BBLs
How Long Can We Continue Producing Oil from Conventional Reservoirs?
U.S.A.
Ultimate 210 Billion Barrels
from Campbell
Global Oil Production-Forecasts

2001 EIA Demand Forecast

Year

Billion barrels per year

Billion barrels

Source: J. MacKenzie, 1996
Will Energy Demand Keep Growing?

- Yes, on the basis of everyone’s predictions.
- World population now 6 Billion
- In 2050, the population will be 9 Billion
- World population estimates for 2050 range from 7.8 to 13 billion
- Increased population will require energy
- Will there be enough oil and gas for the expanding world population?
In the next 20 years, oil production from conventional reservoirs may begin to decline, creating a gap between supply and demand.
Gap Between Supply-Demand

EIA 2001

Gap

2200

Billion barrels per year

Year
What Can Fill The Gap?

- Gas Reservoirs Around the World
 - 5000 TCF of World Gas Reserves
- Unconventional Reservoirs
 - Heavy Oil or Tight Gas
- Renewable Resources
 - Wind or Solar
- Fuel Cells
- Nuclear Power Plants
What Will Dictate the Way Forward?

- Environmental Issues – Move to H_2
- Political Issues – Government Actions
- Capital Costs – High for every option
- Advances in Technology – GTL, etc.
- World Prices for Oil and Gas
- Existing Conditions – Lots of Automobiles
- Control of Terrorism
The Golden Age of Gas is Now
• Inevitable shift to gas—both exploration and production

Source: US DOE EIA - International Energy Outlook, 1999
World Natural Gas Consumption

Tcf
World Gas Reserves

Total = 5200 Tcf

EE&FSU: 2000 Tcf
ME: 2200 Tcf
NSA: 400 Tcf
AF: 200 Tcf
AP: 100 Tcf
WE: 50 Tcf

TCF
Gas Reserves by Country

- Russia
- Iran
- Saudi
- USA
- Ven
- UK
- USA-NCG

TCF
Gas Hydrates (1% Recovery)?
The Gas Cycle – What is it?
The Gas Cycle Includes Everything From

- Exploration
- Reservoir evaluation
- Reservoir description
- Reservoir development
- Production operations
- Reservoir engineering
- Gas processing facilities
- Gas transportation
- LNG processing
- GTL processing
- Burner tip use
- Gas-by-wire use
- Gas powered vehicles
- Gas as feedstock
Natural Gas Utilization Options

- Domestic Gas
- LNG
- Power Generation
- Ammonia
- Urea
- Methanol / MTBE
- Dimethyl Ether
- Fischer-Tropsch Products
- CNG
Imports
- Canada: 3.4 Tcf
- Algeria: 0.076 Tcf
- Mexico: 0.055 Tcf
- Trinidad: 0.051 Tcf
- Qatar: 0.02 Tcf
- Australia: 0.012 Tcf
- UAE: 0.003 Tcf
- Malaysia: 0.003 Tcf

Exports
- Canada: 3.4 Tcf
- Mexico: 0.055 Tcf
- Japan: 0.064 Tcf

Gross Production
23.8 Tcf

Vented
0.2 Tcf

Injected
3.3 Tcf

Non-hydrogen Gas
0.6 Tcf

Gas Plants
18.7 Tcf

Dry Gas Production
22.15 Tcf

Loss/Use
0.9 Tcf

Storage
22.36 Tcf

Residential
4.72 Tcf

Commercial
3.07 Tcf

Industrial
7.95 Tcf

Electricity
3.78 Tcf

Fuel
1.87 Tcf

Transportation
0.02 Tcf

Discrepancy
0.946 Tcf

In
2.7 Tcf

Out
2.9 Tcf
Natural Gas Logistics

- Natural gas is more difficult to transport than oil
- Most gas use is in the USA and Europe where systems of pipelines are used to transport natural gas
- In remote parts of the world, gas must be transported
 - As LNG, which requires high Capex, or
 - GTL which is an emerging technology, or
 - Gas-by-wire, which is electric power generation, or
 - New, expensive pipelines will have to be constructed
LNG Trade
LNG Properties

- Stored as a liquid at minus 260°F under pressure
- Occupies 1/600 (0.00167) the volume of natural gas at standard temperature and pressure
- Mostly methane with very few heavy components
- LNG is
 - Odorless
 - Non-corrosive
 - Colorless
 - Non-toxic
LNG Facts

- Australia has 100 Tcf looking for a market
- Shell is looking at a floating LNG plant in Timor Sea
- Others looking at LNG for Alaska’s 35 Tcf
- New Sources from Nigeria and Venezuela
- Large expansion will require more tankers
Major trade movements
Trade flows worldwide (billion cubic metres)

Natural gas ➔ LNG

USA ➔ Canada ➔ Mexico ➔ S. & Cent. America ➔ Europe ➔ Former Soviet Union ➔ Middle East ➔ Africa ➔ Asia Pacific

36 SPE/Holditch
LNG Trade Movements

Middle East 54 million boe

Malaysia 122 million boe

Brunei 50 million boe

NW Shelf 60 million boe

Indonesia 218 million boe
LNG Movement in 1999

<table>
<thead>
<tr>
<th>Major Importer</th>
<th>Volume (Tcf)</th>
<th>Major Exporter</th>
<th>Volume (Tcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>2.440</td>
<td>Indonesia</td>
<td>1.273</td>
</tr>
<tr>
<td>South Korea</td>
<td>0.617</td>
<td>Algeria</td>
<td>0.907</td>
</tr>
<tr>
<td>France</td>
<td>0.361</td>
<td>Malaysia</td>
<td>0.724</td>
</tr>
<tr>
<td>Spain</td>
<td>0.252</td>
<td>Australia</td>
<td>0.355</td>
</tr>
<tr>
<td>USA</td>
<td>0.161</td>
<td>Brunei</td>
<td>0.296</td>
</tr>
<tr>
<td>Belgium</td>
<td>0.142</td>
<td>Qatar</td>
<td>0.286</td>
</tr>
<tr>
<td>Others (3)</td>
<td>0.307</td>
<td>Others (5)</td>
<td>0.439</td>
</tr>
<tr>
<td>Total</td>
<td>4.280</td>
<td>Total</td>
<td>4.280</td>
</tr>
</tbody>
</table>
LNG Capacity in the U.S.

<table>
<thead>
<tr>
<th>Location</th>
<th>Owner</th>
<th>Capacity</th>
<th>Rate</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Everett MA</td>
<td>Cabot</td>
<td>3.5</td>
<td>435</td>
<td>1971-1985; 1987 - present</td>
</tr>
<tr>
<td>Lake Charles</td>
<td>CMS</td>
<td>6.3</td>
<td>700</td>
<td>1982-1983; 1989-present</td>
</tr>
<tr>
<td>Cove Point</td>
<td>Williams</td>
<td>5.0</td>
<td>1000</td>
<td>1978-1980; 1985- present</td>
</tr>
<tr>
<td>Elba Island</td>
<td>El Paso</td>
<td>4.2</td>
<td>675</td>
<td>1978-1980</td>
</tr>
<tr>
<td>Puerto Rico</td>
<td>Enron</td>
<td>3.5</td>
<td>186</td>
<td>2000 – present</td>
</tr>
</tbody>
</table>
GTL Technology
What is GTL?

- Gas to Liquids is the conversion of natural gas to high value liquid fuels, such as
 - Methanol
 - Dimethyl Ether (DME)
 - Middle distillates
 - Specialty chemicals and waxes
- Fischer-Tropsch Chemistry began in 1920’s and was used in WWII by Germans
GTL Chemistry

Methane \rightarrow CH$_4$ + O$_2$ + H$_2$O \rightarrow CO + H$_2$ \rightarrow n(CH$_2$) + nH$_2$O \rightarrow Liquid Fuels
Methanol

Fuel Cells
DME
Gasoline

Ammonia/Urea

Diesel
Naphtha
LPG
Wax/Lubes

Natural Gas

Syngas Production

Fischer Tropsch Process
Commercial GTL Plants

<table>
<thead>
<tr>
<th>Operator</th>
<th>Location</th>
<th>Bbls/day</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sasol – 1955</td>
<td>South Africa</td>
<td>124,000</td>
<td>Light olefins and gasoline</td>
</tr>
<tr>
<td>Mossgas – 1991</td>
<td>South Africa</td>
<td>22,500</td>
<td>Gasoline and diesel</td>
</tr>
<tr>
<td>Shell – 1993</td>
<td>Malaysia</td>
<td>12,500</td>
<td>Waxes, chemicals and diesel</td>
</tr>
</tbody>
</table>
Proposed GTL Plants

<table>
<thead>
<tr>
<th>Operator</th>
<th>Location</th>
<th>Bbls/day</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rentech</td>
<td>USA</td>
<td>1200</td>
<td>Waxes and fuels</td>
</tr>
<tr>
<td>Syntroleum</td>
<td>Australia</td>
<td>10,000</td>
<td>High margin products</td>
</tr>
<tr>
<td>Sasol</td>
<td>Qatar</td>
<td>34,000</td>
<td>Liquid fuels</td>
</tr>
<tr>
<td>ExxonMobil</td>
<td>Qatar</td>
<td>100,000</td>
<td>Liquid fuels</td>
</tr>
<tr>
<td>SasolChevron</td>
<td>Nigeria</td>
<td>33,000</td>
<td>Liquid fuels</td>
</tr>
<tr>
<td>BP</td>
<td>Alaska</td>
<td>100,000</td>
<td>Liquid fuels</td>
</tr>
<tr>
<td>Sicor</td>
<td>Ethiopia</td>
<td>20,000</td>
<td>Liquid fuels</td>
</tr>
<tr>
<td>PDVSA</td>
<td>Venezuela</td>
<td>15,000</td>
<td>Liquid fuels</td>
</tr>
</tbody>
</table>
Feasibility Studies for GTL

<table>
<thead>
<tr>
<th>Operator</th>
<th>Location</th>
<th>Bbls/day</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell</td>
<td>Indonesia</td>
<td>75,000</td>
<td>Liquid fuels</td>
</tr>
<tr>
<td>Shell</td>
<td>Australia</td>
<td>75,000</td>
<td>Liquid fuels</td>
</tr>
<tr>
<td>Shell</td>
<td>Malasia</td>
<td>75,000</td>
<td>Liquid fuels</td>
</tr>
<tr>
<td>Shell</td>
<td>Egypt</td>
<td>75,000</td>
<td>Liquid fuels</td>
</tr>
<tr>
<td>Shell</td>
<td>Iran</td>
<td>75,000</td>
<td>Liquid fuels</td>
</tr>
<tr>
<td>Shell</td>
<td>Argentina</td>
<td>75,000</td>
<td>Liquid fuels</td>
</tr>
<tr>
<td>Shell</td>
<td>Trinidad</td>
<td>75,000</td>
<td>Liquid fuels</td>
</tr>
<tr>
<td>SasolChevron</td>
<td>Australia (2)</td>
<td>30-100,000</td>
<td>Liquid fuels</td>
</tr>
</tbody>
</table>
Economies of Scale

<table>
<thead>
<tr>
<th>Plant Size</th>
<th>Capacity (BPD)</th>
<th>Capex (US$/BPD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>< 10,000</td>
<td>40,000</td>
</tr>
<tr>
<td>Medium</td>
<td>10,000 – 35,000</td>
<td>40,000 – 22,000</td>
</tr>
<tr>
<td>Large</td>
<td>> 35,000</td>
<td>19,000 – 22,000</td>
</tr>
</tbody>
</table>
Approximate GTL Plant Costs

- Oxygen Plant and Gas Purification 35%
- Synthesis Gas Generation 25%
- Fischer-Tropsch Processes 30%
- Product Upgrades 10%
Gas by Wire
World Electricity Consumption

Billion Kilowatthours

- Develop
- FSU/EE
- Indus
World Electricity Generation

Quadrillion BTU

- Renewable
- Nuclear
- Coal
- Gas
- Oil

USA Electricity Consumption

Billion Kilowatthours

Indus
Comm
Resid
USA Natural Gas Consumption

Major Increase is in Electricity Generation

Tcf

- Fuel
- Elec
- Indus
- Comm
- Resid

USA Natural Gas Demand

- Demand to increase 10 Tcf per year by 2015
- Virtually all the increase will be in electricity generation
- Sources of new gas
 - LNG
 - Alaska/Canada pipeline
 - New Drilling
- Need $3+/Mcf for any of these options
Sources of New Gas

• Imported Liquified Natural Gas (LNG)
 – Current 5 terminals can supply 1 Tcf/yr
 – 10 more terminals are being planned
 – Will take time and more tankers

• Alaska/Canada Pipeline
 – May cost $18-20 billion
 – May take 6-7 years
 – Will deliver 1-2 Tcf/yr
New Drilling

- Offshore – recovery is 5-10 bcf per well but costs are very high
- Onshore – recovery is 1-2 bcf per well with lower costs than offshore
- For 1 Tcf/yr of new gas onshore, it will require,
 - Hundreds of new rigs
 - Thousands of new wells
 - Thousands of people (40 people for each new rig)
 - Lost of new $$$
U.S. Dry Gas Production (Tcf)

Source: DOE/EIA
U.S. Production History

* Representing 93% of US Production
Total Natural Gas Resources – U.S. (TCF)

<table>
<thead>
<tr>
<th>Category</th>
<th>Resource Type</th>
<th>Total (TCF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Natural Gas Resources</td>
<td></td>
<td>1281</td>
</tr>
<tr>
<td>Proved Reserves</td>
<td></td>
<td>164</td>
</tr>
<tr>
<td>S.</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>Alaska</td>
<td></td>
<td>129</td>
</tr>
<tr>
<td>Associated-Dissolved</td>
<td></td>
<td>393</td>
</tr>
<tr>
<td>Unconventional</td>
<td></td>
<td>278</td>
</tr>
<tr>
<td>Tight Gas</td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>CBM Shale</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>Inferred Reserves</td>
<td></td>
<td>244</td>
</tr>
<tr>
<td>Offshore</td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>Onshore</td>
<td></td>
<td>192</td>
</tr>
<tr>
<td>Onshore (Deep)</td>
<td></td>
<td>152</td>
</tr>
<tr>
<td>Onshore (Shallow)</td>
<td></td>
<td>118</td>
</tr>
<tr>
<td>Onshore (CBM)</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>Onshore (Shale)</td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>Onshore (Other)</td>
<td></td>
<td>167</td>
</tr>
</tbody>
</table>
More gas storage will be needed
The Gas Cycle from E&P to Distribution

Incremental consumer cost ($)

Source: IEA, GRI
European UGS Outlook

Source: International Energy Agency
UGS projects in Europe: 2000-2010

- **97 existing UGS**
- **44 new projects**
- **40 expansions**

Total UGS Work Gas in Europe:
Today = 57 Bcm → 2015 = 126 Bcm

Source: UN
Optimization of the Gas Cycle

Software
Data Management
Networking
Metering
Automation

Incremental consumer cost ($)

E&P Compress Interstate UGS Pipeline Distribution
Summary and Conclusions
World Energy Generation

Quadrillion BTU

- 1990
- 1999
- 2005
- 2010
- 2015
- 2020

- Other
- Nuclear
- Coal
- Gas
- Oil
Summary of World Increases

<table>
<thead>
<tr>
<th>Item</th>
<th>2000</th>
<th>2020</th>
<th>% Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population (billion)</td>
<td>6.1</td>
<td>7.6</td>
<td>25</td>
</tr>
<tr>
<td>Energy (Quadrillion BTU)</td>
<td>385</td>
<td>607</td>
<td>58</td>
</tr>
<tr>
<td>Oil Production (billion bbls)</td>
<td>27</td>
<td>43</td>
<td>60</td>
</tr>
<tr>
<td>Gas Production (Tcf)</td>
<td>86</td>
<td>162</td>
<td>88</td>
</tr>
<tr>
<td>Electricity (Quadrillion BTU)</td>
<td>150</td>
<td>225</td>
<td>50</td>
</tr>
</tbody>
</table>
Conclusions

• The world population (25%) and energy needs (60%) will grow substantially in the next 20 years.

• Production from conventional oil reservoirs will peak and begin to decline in the next 20 years.

• There will be a gap between demand for oil and production from conventional oil reservoirs during the next 20 years.

• Other resources (gas) will have to be developed to meet the world energy demands by 2020.
Conclusions

- The world currently has the oil and gas resources required to meet demand in the next 20 years.
- Liquids from conventional natural gas, plus unconventional oil and gas can fill the gap once conventional oil production begins to decline.
- Opportunity exists for the next 1-2 generations of young professionals to have a successful career in the global E&P Oil and Gas Industry.
Conclusions

• To meet the growing world energy needs
 – Liquified Natural Gas (LNG),
 – Gas to Liquids Technology (GTL),
 – New Gas Pipelines, and
 – Gas by Wire (electric generation)
 – New Underground Gas Storage

will be required to transport the world’s natural gas energy from the field to the end user

• Significant capital investment and new technology are required to bring more gas to market